Difference between revisions of "YDL140C"

From SGD-Wiki
Jump to: navigation, search
(Automated import of articles)
(Automated import of articles)
 
(11 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
{|{{Prettytable}} align = 'right' width = '200px'
 
{|{{Prettytable}} align = 'right' width = '200px'
 
|-
 
|-
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Systematic name''' || [http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YDL140C YDL140C]  
+
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Systematic name''' || [http://www.yeastgenome.org/cgi-bin/locus.pl?dbid=S000002299 YDL140C]  
 
|-
 
|-
 
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Gene name'''        ||''RPO21 ''
 
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Gene name'''        ||''RPO21 ''
Line 13: Line 13:
 
|-
 
|-
 
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Coordinates'''
 
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Coordinates'''
|nowrap| Chr IV:210562..205361
+
|nowrap| Chr IV:210561..205360
 +
|-
 +
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Primary SGDID'''          || S000002299
 
|}
 
|}
 
<br>
 
<br>
'''Description of {{PAGENAME}}:''' RNA polymerase II largest subunit B220, part of central core; phosphorylation of C-terminal heptapeptide repeat domain regulates association with transcription and splicing factors; similar to bacterial beta-prime<ref name='S000080886'>Cramer P (2002) Multisubunit RNA polymerases. Curr Opin Struct Biol 12(1):89-97 {{SGDpaper|S000080886}} PMID 11839495</ref><ref name='S000074163'>Geiduschek EP and Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310(1):1-26 {{SGDpaper|S000074163}} PMID 11419933</ref><ref name='S000069428'>Proudfoot N (2000) Connecting transcription to messenger RNA processing. Trends Biochem Sci 25(6):290-3 {{SGDpaper|S000069428}} PMID 10838569</ref><ref name='S000058793'>Cramer P, et al. (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288(5466):640-9 {{SGDpaper|S000058793}} PMID 10784442</ref><ref name='S000058335'>Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62(2):465-503 {{SGDpaper|S000058335}} PMID 9618449</ref><ref name='S000057661'>Archambault J and Friesen JD (1993) Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol Rev 57(3):703-24
+
'''Description of YDL140C:''' RNA polymerase II largest subunit B220, part of central core; phosphorylation of C-terminal heptapeptide repeat domain regulates association with transcription and splicing factors; similar to bacterial beta-prime<ref name='S000057661'>Archambault J and Friesen JD (1993) Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol Rev 57(3):703-24 {{SGDpaper|S000057661}} PMID 8246845</ref><ref name='S000080886'>Cramer P (2002) Multisubunit RNA polymerases. Curr Opin Struct Biol 12(1):89-97 {{SGDpaper|S000080886}} PMID 11839495</ref><ref name='S000058793'>Cramer P, et al. (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288(5466):640-9 {{SGDpaper|S000058793}} PMID 10784442</ref><ref name='S000074163'>Geiduschek EP and Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310(1):1-26 {{SGDpaper|S000074163}} PMID 11419933</ref><ref name='S000058335'>Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62(2):465-503 {{SGDpaper|S000058335}} PMID 9618449</ref><ref name='S000069428'>Proudfoot N (2000) Connecting transcription to messenger RNA processing. Trends Biochem Sci 25(6):290-3
  {{SGDpaper|S000057661}} PMID 8246845</ref>
+
  {{SGDpaper|S000069428}} PMID 10838569</ref>
 
<br>
 
<br>
 
<br>
 
<br>
Line 28: Line 30:
 
{{CommentaryHelp}}
 
{{CommentaryHelp}}
  
 +
Rpb1-1 mutation: this is a ts mutant which does not transcribe at the restrictive temperature. According to Scafe, S., Martin, C., Nonet, M., Podos, S., Okamura, S. and Young, R. (MCB 1990 vol. 10(3):1270-1275) this mutation is G->A at base 4622 (base 1 is A of ATG). However, according the Nedea, EC., Markov, D., Naryshkina, T. and Severinov, K. (J. Bact. 1999 Vol 181(8):2663-2665) the rpb1-1 mutation is equivalent to a parallel ts mutation in the E. coli RNA pol, in a conserved Glycine. According to their article, the rpb1-1 mutation is in this conserved Gly (aa 1437, or base 4310) and not Gly 1541 (base 4622 according to R. Young).
 +
After sequencing two rpb1-1 mutants in our posession, we agree with Severinov, that the G->A mutation is at base 4310 and NOT in base 4622.
 +
 +
 +
 +
<!-- PLEASE ADD Community Commentary ABOVE THIS MESSAGE. See below for an example of community annotation -->
 +
<!--
 +
Specifically higher expression in carbon limited chemostat cultures versus carbon excess.
 +
<ref>Boer VM, et al. (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur.
 +
J Biol Chem 278(5):3265-74</ref>
 +
-->
 +
 +
 +
 +
<protect>
  
 +
==References==
 +
<!-- REFERENCES ARE AUTOMATICALLY GENERATED.  PLEASE DON'T EDIT THIS SECTION-->
 +
{{RefHelp}}
 +
</protect>
 
<protect>
 
<protect>
 
==References==
 
==References==

Latest revision as of 06:45, 23 January 2012

Share your knowledge...Edit this entry! <protect>

Systematic name YDL140C
Gene name RPO21
Aliases RPB1, RPB220, SUA8
Feature type ORF, Verified
Coordinates Chr IV:210561..205360
Primary SGDID S000002299


Description of YDL140C: RNA polymerase II largest subunit B220, part of central core; phosphorylation of C-terminal heptapeptide repeat domain regulates association with transcription and splicing factors; similar to bacterial beta-prime[1][2][3][4][5][6]




</protect>

Community Commentary

About Community Commentary. Please share your knowledge!

Rpb1-1 mutation: this is a ts mutant which does not transcribe at the restrictive temperature. According to Scafe, S., Martin, C., Nonet, M., Podos, S., Okamura, S. and Young, R. (MCB 1990 vol. 10(3):1270-1275) this mutation is G->A at base 4622 (base 1 is A of ATG). However, according the Nedea, EC., Markov, D., Naryshkina, T. and Severinov, K. (J. Bact. 1999 Vol 181(8):2663-2665) the rpb1-1 mutation is equivalent to a parallel ts mutation in the E. coli RNA pol, in a conserved Glycine. According to their article, the rpb1-1 mutation is in this conserved Gly (aa 1437, or base 4310) and not Gly 1541 (base 4622 according to R. Young). After sequencing two rpb1-1 mutants in our posession, we agree with Severinov, that the G->A mutation is at base 4310 and NOT in base 4622.




<protect>

References

See Help:References on how to add references

  1. Archambault J and Friesen JD (1993) Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol Rev 57(3):703-24 SGD PMID 8246845
  2. Cramer P (2002) Multisubunit RNA polymerases. Curr Opin Struct Biol 12(1):89-97 SGD PMID 11839495
  3. Cramer P, et al. (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288(5466):640-9 SGD PMID 10784442
  4. Geiduschek EP and Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310(1):1-26 SGD PMID 11419933
  5. Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62(2):465-503 SGD PMID 9618449
  6. Proudfoot N (2000) Connecting transcription to messenger RNA processing. Trends Biochem Sci 25(6):290-3 SGD PMID 10838569

See Help:Categories on how to add the wiki page for this gene to a Category </protect> <protect>

References

See Help:References on how to add references

See Help:Categories on how to add the wiki page for this gene to a Category </protect>