Commonly used strains
This page describes some of the most commonly used yeast lab strains. Much of the information is taken from F. Sherman (2002) Getting started with yeast, Methods Enzymol. 350, 3-41. Other useful papers for strain background information include:
- Mortimer and Johnston (1986) Genetics 113:35-43 - thoroughly describes the genealogy of strain S288C
- van Dijken et al. (2000) Enzyme Microb Technol 26:706-714 - compares various characteristics of commonly used lab strains
- Winzeler et al. (2003) Genetics 163:79-89 - uses SFP (single-feature polymorphisms) analysis to study genetic identity between common lab strains
Contents
[hide]S288C
Genotype: MATα SUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6
Notes: Strain used in the systematic sequencing project, the sequence stored in SGD. S288C does not form pseudohyphae. In addition, since it has a mutated copy of HAP1, it is not a good strain for mitochondrial studies. It has an allelic variant of MIP1 which increases petite frequency. S288C strains are gal2- and they do not use galactose anaerobically.
The S288C genome was recently resequenced at the Sanger Institute.
References: Mortimer and Johnston (1986) Genetics 113:35-43.
Sources: ATCC:204508
BY4743
Genotype: MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0
Notes: Strain used in the systematic deletion project, generated from a cross between BY4741 and BY4742, which are derived from S288C. As S288c, these strains have an allelic variant of MIP1 which increases petite frequency. See Brachmann et al. reference for details.
References: Brachmann et al. (1998) Yeast 14:115-32.
Sources: Biosystems:YSC1050
FY4
Genotype: MATa
Notes: Derived from S288C.
References: Winston et al. (1995) Yeast 11:53-55.
Brachmann et al. (1998) Yeast 14:115-32.
FY1679
Genotype: MATa/α ura3-52/ura3-52 trp1Δ63/TRP1 leu2Δ1/LEU2 his3Δ200/HIS3 GAL2/GAL
Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.
References: Winston et al. (1995) Yeast 11:53-55.
Sources: EUROSCARF:10000D
AB972
Genotype: MATα X2180-1B trp10 [rho 0]
Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD. AB972 is an ethidium bromide-induced rho- derivative of the strain X2180-1B-trp1.
References: Olson MV et al. (1986) Proc. Natl. Acad. Sci. USA 83:7826-7830.
Sources: ATCC:204511
A364A
Genotype: MATa ade1 ade2 ura1 his7 lys2 tyr1 gal1 SUC mal cup BIO
Notes: Used in the systematic sequencing project, the sequence stored in SGD.
References: Hartwell (1967) J. Bacteriol. 93:1662-1670.
Sources: ATCC:208526
XJ24-24a
Genotype: MATa ho HMa HMα ade6 arg4-17 trp1-1 tyr7-1 MAL2
Notes: Derived from, but not isogenic to, S288C
References: Strathern et al. (1979) Cell 18:309-319
DC5
Genotype: MATa leu2-3,112 his3-11,15 can1-11
Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.
References: Broach et al. (1979) Gene 8:121-133
X2180-1A
Genotype: MATa SUC2 mal mel gal2 CUP1
Notes:S288c spontaneously diploidized to give rise to X2180. The haploid segregants X2180-1a and X2180-1b were obtained from sporulated X2180
References: Mortimer and Johnston
Sources: ATCC:204504
YNN216
Genotype: MATa/α ura3-52/ura3-52 lys2-801amber/lys2-801amber ade2-101ochre/ade2-101ochre
Notes: Congenic to S288C (see Sikorski and Hieter). Used to derive YSS and CY strains (see Sobel and Wolin).
References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.
YPH499
Genotype: MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1
Notes: Contains nonrevertible (deletion) auxotrophic mutations that can be used for selection of vectors. Note that trp1-Δ63, unlike trp1-Δ1, does not delete adjacent GAL3 UAS sequence and retains homology to TRP1 selectable marker. gal2-, does not use galactose anaerobically. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.
References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.
Johnston M and Davis RW (1984) Mol Cell Biol 4(8):1440-8.
Sources: ATCC:204679
YPH500
Genotype: MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1
Notes:MATα strain isogenic to YPH499 except at mating type locus. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.
References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.
Johnston M and Davis RW (1984) Mol Cell Biol 4(8):1440-8.
Sources: ATCC:204680
YPH501
Genotype: MATa/MATα ura3-52/ura3-52 lys2-801_amber/lys2-801_amber ade2-101_ochre/ade2-101_ochre trp1-Δ63/trp1-Δ63 his3-Δ200/his3-Δ200 leu2-Δ1/leu2-Δ1
Notes: a/α diploid isogenic to YPH499 and YPH500. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.
References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.
Johnston M and Davis RW (1984) Mol Cell Biol 4(8):1440-8.
Sources: ATCC:204681
Sigma 1278B
Notes: Used in pseudohyphal growth studies. Detailed notes about the sigma strains have been kindly provided by Cora Styles.
Granek and Magwene, PLoS Genet. 2010 Jan 22;6(1):e1000823, established that certain lineages of the Sigma1278B background contain a nonsense mutation in RIM15, a G-to-T transversion at position 1216 that converts a Gly codon to an opal stop codon. This rim15 mutation interacts epistatically with mutations in certain other genes to affect colony morphology.
Annotation of the Sigma1278b genome and information about the systematic deletion collection can be found here.
SK1
Genotype: MATa/α HO gal2 cupS can1R BIO
Notes: Commonly used for studying sporulation or meiosis. Canavanine-resistant derivative.
The SK1 genome was sequenced at the Sanger Institute.
References: Kane SM and Roth J. (1974) Bacteriol. 118: 8-14
Sources: ATCC:204722
CEN.PK (aka CEN.PK2)
Genotype: MATa/α ura3-52/ura3-52 trp1-289/trp1-289 leu2-3_112/leu2-3_112 his3 Δ1/his3 Δ1 MAL2-8C/MAL2-8C SUC2/SUC2
Notes: CEN.PK possesses a mutation in CYR1 (A5627T corresponding to a K1876M substitution near the end of the catalytic domain in adenylate cyclase which eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance (Vanhalewyn et al., 1999; Dumortier et al., 2000).
References: van Dijken et al. (2000) Enzyme Microb Technol 26:706-714
Sources: EUROSCARF:30000D
W303
Genotype: MATa/MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} [phi+]
Notes: W303 also contains a bud4 mutation that causes haploids to bud with a mixture of axial and bipolar budding patterns. In addition, the original W303 strain contains the rad5-535 allele. As S288c, W303 has an allelic variant of MIP1 which increases petite frequency.
The W303 genome was sequenced at the Sanger Institute.
References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).
bud4 info: Voth et al. (2005) Eukaryotic Cell, 4:1018-28.
rad5-535 info: Fan et al. (1996) Genetics 142:749
Sources: Biosystems:YSC1058
W303-1A
Genotype: MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}
Notes: W303-1A possesses a ybp1-1 mutation (I7L, F328V, K343E, N571D) which abolishes Ybp1p function, increasing sensitivity to oxidative stress.
References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).
ybp1-1 info: Veal et al. (2003) J. Biol. Chem. 278:30896-904.
Sources: Biosystems:YSC1058
W303-1B
Genotype: MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}
References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).
Sources: Biosystems:YSC1058
W303-K6001
Genotype: MATa; {ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, GAL, psi+, ho::HO::CDC6 (at HO), cdc6::hisG, ura3::URA3 GAL-ubiR-CDC6 (at URA3)}
References: K6001 was developed by Bobola et al in Kim Nasmyth's lab (PMID: 8625408), and has become a common model in yeast aging research (PMID: 15489200). Its genome has been sequenced by Timmermann et al (PMID: 20729566)
D273-10B
Genotype: MATα mal
Notes: Normal cytochrome content and respiration; low frequency of rho-. This strain and its auxotrophic derivatives were used in numerious laboratories for mitochondrial and related studies and for mutant screens. Good respirer that's relatively resistant to glucose repression.
References: Sherman, F. (1963) Genetics 48:375-385.
Sources: ATCC:24657
FL100
Genotype: MATa
References: Lacroute, F. (1968) J. Bacteriol. 95:824-832.
Sources: ATCC: 28383
SEY6210/SEY6211
Genotype: MATa/MATα leu2-3,112/leu2-3,112 ura3-52/ura3-52 his3-Δ200/his3-Δ200 trp1-Δ901/trp1-Δ901 ade2/ADE2 suc2-Δ9/suc2-Δ9 GAL/GAL LYS2/lys2-801
Notes: SEY6210/SEY6211, also known as SEY6210.5, was constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers, good growth properties and good sporulation.
References: Robinson et al. (1988) Mol Cell Biol 8(11):4936-48
Sources: ATCC:201392
SEY6210
Genotype: MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 lys2-801; GAL
Notes: SEY6210 is a MATalpha haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.
References: Robinson et al. (1988) Mol Cell Biol 8(11):4936-48
Sources: ATCC:96099
SEY6211
Genotype: MATa leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 ade2-101 suc2-Δ9; GAL
Notes: SEY6211 is a MATa haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.
References: Robinson et al. (1988) Mol Cell Biol 8(11):4936-48
Sources: ATCC:96100
JK9-3d
There are a, alpha and a/alpha diploids of JK9-3d with the following genotypes:
Genotypes: JK9-3da MATa leu2-3,112 ura3-52 rme1 trp1 his4
JK9-3dα has the same genotype as JK9-3da with the exception of the MAT locus
JK9-3da/α is homozygous for all markers except mating type
Notes: JK9-3d was constructed by Jeanette Kunz while in Mike Hall's lab. She made the original strain while Joe Heitman isolated isogenic strains of opposite mating type and derived the a/alpha isogenic diploid by mating type switching. It has in its background S288c, a strain from the Oshima lab, and a strain from the Herskowitz lab. It was chosen because of its robust growth and sporulation, as well as good growth on galactose (GAL+) (so that genes under control of the galactose promoter could be induced). It may also have a SUP mutation that allows translation through premature STOP codons and therefore produces functional alleles with many point mutations.
References: Heitman et al. (1991a) Science 253(5022):905-9 and Heitman et al. (1991b) Proc Natl Acad Sci U S A 88(5):1948-52
RM11-1a
Genotype: MATa leu2Δ ura3Δ ho::Kan
Notes: RM11-1a is a haploid derivative of Bb32(3), a natural isolate collected by Robert Mortimer from a California vineyard, as in Mortimer et al., 1994. It has high spore viability (80–90%) and has been extensively characterized phenotypically under a wide range of conditions. It has a significantly longer life span than typical lab yeast strains and accumulates age-associated abnormalities at a lower rate. It displays approximately 0.5–1% sequence divergence relative to S288c. More information is available at the Broad Institute website.
References: Brem et al. (2002) Science 296(5568):752-5
Y55
Genotype: MATa /MATalpha HO/HO
Notes: Y55 is a prototrophic, homothallic diploid strain that was originally isolated by Dennis Winge. Many auxotrophic mutant derivatives have been created by John McCusker by using ethidium bromide treatment to eliminate non-auxotrophs. Y55 background strains have been used to study the timing of meiotic recombination Borts et al. 1984; to isolate almost all the subunits of the proteasome McCusker and Haber 1988a, 1988b; to get mutations in PMA1 and related genes McCusker 1986; and to do meiotic mapping and interference experiments Malkova et al. 2004.