Difference between revisions of "Commonly used strains"

From SGD-Wiki
Jump to: navigation, search
Line 200: Line 200:
  
 
'''Sources:''' [http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=96100&Template=fungiYeast ATCC:96100]
 
'''Sources:''' [http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=96100&Template=fungiYeast ATCC:96100]
 +
 +
=JK9-3d=
 +
 +
There are a, alpha and a/alpha diploids of JK9-3d with the following genotypes:
 +
 +
'''Genotypes:''' JK9-3da  ''MAT''a ''leu2-3,112 ura3-52 rme1 trp1 his4''
 +
 +
JK9-3dα has the same genotype as JK9-3da with the exception of the MAT locus
 +
 +
JK9-3da/α is homozygous for all markers except mating type
 +
 +
'''Notes:''' JK9-3d was constructed by Jeanette Kunz while in Mike Hall's lab and  Joe Heitman isolated isogenic strains of opposite mating type and
 +
derived the a/alpha isogenic diploid by mating type switching.  It has in its background S288c, a strain from the Oshima lab, and a strain from the Herskowitz lab. It was chosen because of its robust growth and sporulation, as well as good growth on galactose (GAL+), so that genes under control of the galactose promoter could be induced. It may also have a SUP mutation that allows translation through premature STOP codons and therefore produces functional alleles with many point mutations.
 +
 +
'''References:''' [http://db.yeastgenome.org/cgi-bin/reference/reference.pl?dbid=S000054286 Heitman et al.] (1991a) Science 253(5022):905-9 and [http://db.yeastgenome.org/cgi-bin/reference/reference.pl?dbid=S000054822 Heitman et al.] (1991b) Proc Natl Acad Sci U S A 88(5):1948-52

Revision as of 11:18, 18 July 2008

This page describes some of the most commonly used yeast lab strains. Much of the information is taken from F. Sherman (2002) Getting started with yeast, Methods Enzymol. 350, 3-41. Other useful papers for strain background information include:

  • Mortimer and Johnston (1986) Genetics 113:35-43 - thoroughly describes the genealogy of strain S288C
  • van Dijken et al. (2000) Enzyme Microb Technol 26:706-714 - compares various characteristics of commonly used lab strains
  • Winzeler et al. (2003) Genetics 163:79-89 - uses SFP (single-feature polymorphisms) analysis to study genetic identity between common lab strains


S288C

Genotype: MATα SUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6

Notes: Strain used in the systematic sequencing project, the sequence stored in SGD. S288C does not form pseudohyphae. In addition, since it has a mutated copy of HAP1, it is not a good strain for mitochondrial studies. S288C strains are gal2- and they do not use galactose anaerobically.

References: Mortimer and Johnston (1986) Genetics 113:35-43.

Sources: ATCC:204508

BY4743

Genotype: MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0

Notes: Strain used in the systematic deletion project, generated from a cross between BY4741 and BY4742, which are derived from S288C. See Brachmann et al. reference for details.

References: Brachmann et al. (1998) Yeast 14:115-32.

Sources: Biosystems:YSC1050

FY4

Genotype: MATa

Notes: Derived from S288C.

References: Brachmann et al. (1998) Yeast 14:115-32.

FY1679

Genotype: MATa/α ura3-52/ura3-52 trp1Δ63/TRP1 leu2Δ1/LEU2 his3Δ200/HIS3 GAL2/GAL

Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.

References: Winston et al. (1995) Yeast 11:53-55.

Sources: EUROSCARF:10000D

AB972

Genotype: MATα X2180-1B trp10 [rho 0]

Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD. AB972 is an ethidium bromide-induced rho- derivative of the strain X2180-1B-trp1.

References: Olson MV et al. (1986) Proc. Natl. Acad. Sci. USA 83:7826-7830.

Sources: ATCC:204511

A364A

Genotype: MATa ade1 ade2 ura1 his7 lys2 tyr1 gal1 SUC mal cup BIO

Notes: Used in the systematic sequencing project, the sequence stored in SGD.

References: Hartwell (1967) J. Bacteriol. 93:1662-1670.

Sources: ATCC:208526

XJ24-24a

Genotype: MATa ho HMa HMα ade6 arg4-17 trp1-1 tyr7-1 MAL2

Notes: Derived from, but not isogenic to, S288C

References: Strathern et al. (1979) Cell 18:309-319

DC5

Genotype: MATa leu2-3,112 his3-11,15 can1-11

Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.

References: Broach et al. (1979) Gene 8:121-133

YNN216

Genotype: MATa/α ura3-52/ura3-52 lys2-801amber/lys2-801amber ade2-101ochre/ade2-101ochre

Notes: Congenic to S288C (see Sikorski and Hieter). Used to derive YSS and CY strains (see Sobel and Wolin).

References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.

YPH499

Genotype: MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1

Notes: Contains nonrevertible (deletion) auxotrophic mutations that can be used for selection of vectors. Note that trp1-Δ63, unlike trp1-Δ1, does not delete adjacent GAL3 UAS sequence and retains homology to TRP1 selectable marker. gal2-, does not use galactose anaerobically. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.

References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.
Johnston M and Davis RW (1984) Mol Cell Biol 4(8):1440-8.

Sources: ATCC:204679

YPH500

Genotype: MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1

Notes:MATα strain isogenic to YPH499 except at mating type locus. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.

References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.
Johnston M and Davis RW (1984) Mol Cell Biol 4(8):1440-8.

Sources: ATCC:204680

YPH501

Genotype: MATa/MATα ura3-52/ura3-52 lys2-801_amber/lys2-801_amber ade2-101_ochre/ade2-101_ochre trp1-Δ63/trp1-Δ63 his3-Δ200/his3-Δ200 leu2-Δ1/leu2-Δ1

Notes: a/α diploid isogenic to YPH499 and YPH500. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.

References: Sikorski RS and Hieter P (1989) Genetics 122:19-27.
Sobel and Wolin (1999) Mol. Biol. Cell 10:3849-3862.
Johnston M and Davis RW (1984) Mol Cell Biol 4(8):1440-8.

Sources: ATCC:204681

Sigma 1278B

Notes: Used in pseudohyphal growth studies. Detailed notes about the sigma strains have been kindly provided by Cora Styles.

SK1

Genotype: MATa/α HO gal2 cupS can1R BIO

Notes: Commonly used for studying sporulation or meiosis. Canavanine-resistant derivative

References: Kane SM and Roth J. (1974) Bacteriol. 118: 8-14

Sources: ATCC:204722

CEN.PK (aka CEN.PK2)

Genotype: MATa/α ura3-52/ura3-52 trp1-289/trp1-289 leu2-3_112/leu2-3_112 his3 Δ1/his3 Δ1 MAL2-8C/MAL2-8C SUC2/SUC2

References: van Dijken et al. (2000) Enzyme Microb Technol 26:706-714

Sources: EUROSCARF:30000D

W303

Genotype: MATa/MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} [phi+]

Notes: W303 also contains a bud4 mutation that causes haploids to bud with a mixture of axial and bipolar budding patterns. In addition, the original W303 strain contains the rad5-535 allele.

References: W303 constructed by Rodney Rothstein (see detailed notes from RR).
bud4 info: Voth, W.P. et al. (2005) Eukaryotic Cell, in press.
rad5-535 info: Fan et al. (1996) Genetics 142:749

Sources: Biosystems:YSC1058

W303-1A

Genotype: MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}

Notes: W303-1A possesses a ybp1-1 mutation (I7L, F328V, K343E, N571D) which abolishes Ybp1p function, increasing sensitivity to oxidative stress.

References: W303 constructed by Rodney Rothstein (see detailed notes from RR).
ybp1-1 info: Veal et al. (2003) J. Biol. Chem. 278:30896-904.

Sources: Biosystems:YSC1058

W303-1B

Genotype: MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}

References: W303 constructed by Rodney Rothstein (see detailed notes from RR).

Sources: Biosystems:YSC1058

X2180-1A

Genotype: MATa SUC2 mal mel gal2 CUP1

References: Robert Mortimer, personal comm.

Sources: ATCC:204504

D273-10B

Genotype: MATα mal

Notes: Normal cytochrome content and respiration; low frequency of rho-. This strain and its auxotrophic derivatives were used in numerious laboratories for mitochondrial and related studies and for mutant screens. Good respirer that's relatively resistant to glucose repression.

References: Sherman, F. (1963) Genetics 48:375-385.

Sources: ATCC:24657

FL100

Genotype: MATa

References: Lacroute, F. (1968) J. Bacteriol. 95:824-832.

SEY6210/SEY6211

Genotype: MATa/MATα leu2-3,112/leu2-3,112 ura3-52/ura3-52 his3 Δ200/his3 Δ200 trp1 Δ901/trp1 Δ901 ade2/ADE2 suc2Δ9/suc2Δ9 GAL/GAL LYS2/lys2-801

Notes: SEY6210/SEY6211, also known as SEY6210.5, was constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers, good growth properties and good sporulation.

References: Robinson et al. (1988) Mol Cell Biol 8(11):4936-48

Sources: ATCC:201392

SEY6210

Genotype: MATα leu2-3,112 ura3-52 his3 Δ200 trp1 Δ901 suc2Δ9; GAL

Notes: SEY6210 is a MATalpha haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.

References: Robinson et al. (1988) Mol Cell Biol 8(11):4936-48

Sources: ATCC:96099

SEY6211

Genotype: MATa leu2-3,112 ura3-52 his3 Δ200 trp1 Δ901 suc2Δ9; GAL

Notes: SEY6211 is a MATa haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.

References: Robinson et al. (1988) Mol Cell Biol 8(11):4936-48

Sources: ATCC:96100

JK9-3d

There are a, alpha and a/alpha diploids of JK9-3d with the following genotypes:

Genotypes: JK9-3da MATa leu2-3,112 ura3-52 rme1 trp1 his4

JK9-3dα has the same genotype as JK9-3da with the exception of the MAT locus

JK9-3da/α is homozygous for all markers except mating type

Notes: JK9-3d was constructed by Jeanette Kunz while in Mike Hall's lab and Joe Heitman isolated isogenic strains of opposite mating type and derived the a/alpha isogenic diploid by mating type switching. It has in its background S288c, a strain from the Oshima lab, and a strain from the Herskowitz lab. It was chosen because of its robust growth and sporulation, as well as good growth on galactose (GAL+), so that genes under control of the galactose promoter could be induced. It may also have a SUP mutation that allows translation through premature STOP codons and therefore produces functional alleles with many point mutations.

References: Heitman et al. (1991a) Science 253(5022):905-9 and Heitman et al. (1991b) Proc Natl Acad Sci U S A 88(5):1948-52