Difference between revisions of "YLR377C"
SGDwikiBot (talk | contribs) (Automated import of articles) |
SGDwikiBot (talk | contribs) (Automated import of articles) |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<!-- PLEASE DO NOT EDIT HERE. USE THE SECTION EDIT LINKS ON THE RIGHT MARGIN--> | <!-- PLEASE DO NOT EDIT HERE. USE THE SECTION EDIT LINKS ON THE RIGHT MARGIN--> | ||
{{PageTop}} | {{PageTop}} | ||
+ | <protect> | ||
{|{{Prettytable}} align = 'right' width = '200px' | {|{{Prettytable}} align = 'right' width = '200px' | ||
|- | |- | ||
− | |valign="top" nowrap bgcolor="{{SGDblue}}"| '''Systematic name''' || [http:// | + | |valign="top" nowrap bgcolor="{{SGDblue}}"| '''Systematic name''' || [http://www.yeastgenome.org/cgi-bin/locus.pl?dbid=S000004369 YLR377C] |
|- | |- | ||
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Gene name''' ||''FBP1 '' | |valign="top" nowrap bgcolor="{{SGDblue}}"| '''Gene name''' ||''FBP1 '' | ||
Line 12: | Line 13: | ||
|- | |- | ||
|valign="top" nowrap bgcolor="{{SGDblue}}"| '''Coordinates''' | |valign="top" nowrap bgcolor="{{SGDblue}}"| '''Coordinates''' | ||
− | |nowrap| Chr XII: | + | |nowrap| Chr XII:874792..873746 |
|- | |- | ||
− | | | + | |valign="top" nowrap bgcolor="{{SGDblue}}"| '''Primary SGDID''' || S000004369 |
|} | |} | ||
<br> | <br> | ||
− | '''Description of | + | '''Description of YLR377C:''' Fructose-1,6-bisphosphatase, key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; interacts with Vid30p<ref name='S000054460'>Entian KD, et al. (1988) Isolation and primary structure of the gene encoding fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. FEBS Lett 236(1):195-200 {{SGDpaper|S000054460}} PMID 2841162</ref><ref name='S000057954'>Hoffman M and Chiang HL (1996) Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 143(4):1555-66 {{SGDpaper|S000057954}} PMID 8844145</ref><ref name='S000080362'>Hung GC, et al. (2004) Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 279(47):49138-50 {{SGDpaper|S000080362}} PMID 15358789</ref><ref name='S000126559'>Santt O, et al. (2008) The Yeast GID Complex, a Novel Ubiquitin Ligase (E3) Involved in the Regulation of Carbohydrate Metabolism. Mol Biol Cell 19(8):3323-33 |
− | {{SGDpaper| | + | {{SGDpaper|S000126559}} PMID 18508925</ref> |
<br> | <br> | ||
<br> | <br> | ||
<br> | <br> | ||
<br> | <br> | ||
+ | <br> | ||
+ | </protect> | ||
__TOC__ | __TOC__ | ||
==Community Commentary== | ==Community Commentary== | ||
Line 35: | Line 38: | ||
{{ShortCenteredHR}} | {{ShortCenteredHR}} | ||
+ | |||
+ | |||
+ | |||
+ | <!-- PLEASE ADD Community Commentary ABOVE THIS MESSAGE. See below for an example of community annotation --> | ||
+ | <!-- | ||
+ | Specifically higher expression in carbon limited chemostat cultures versus carbon excess. | ||
+ | <ref>Boer VM, et al. (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. | ||
+ | J Biol Chem 278(5):3265-74</ref> | ||
+ | --> | ||
+ | |||
+ | |||
+ | |||
+ | <protect> | ||
==References== | ==References== | ||
<!-- REFERENCES ARE AUTOMATICALLY GENERATED. PLEASE DON'T EDIT THIS SECTION--> | <!-- REFERENCES ARE AUTOMATICALLY GENERATED. PLEASE DON'T EDIT THIS SECTION--> | ||
{{RefHelp}} | {{RefHelp}} | ||
+ | </protect> |
Latest revision as of 06:45, 23 January 2012
Share your knowledge...Edit this entry! <protect>
Systematic name | YLR377C |
Gene name | FBP1 |
Aliases | ACN8 |
Feature type | ORF, Verified |
Coordinates | Chr XII:874792..873746 |
Primary SGDID | S000004369 |
Description of YLR377C: Fructose-1,6-bisphosphatase, key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; interacts with Vid30p[1][2][3][4]
</protect>
Contents
Community Commentary
About Community Commentary. Please share your knowledge!
DNA and RNA Details
Other DNA and RNA Details
Other Topic: expression
Specifically higher expression in carbon limited chemostat cultures versus carbon excess. [5] [6]
<protect>
References
See Help:References on how to add references
- ↑ Entian KD, et al. (1988) Isolation and primary structure of the gene encoding fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. FEBS Lett 236(1):195-200 SGD PMID 2841162
- ↑ Hoffman M and Chiang HL (1996) Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 143(4):1555-66 SGD PMID 8844145
- ↑ Hung GC, et al. (2004) Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 279(47):49138-50 SGD PMID 15358789
- ↑ Santt O, et al. (2008) The Yeast GID Complex, a Novel Ubiquitin Ligase (E3) Involved in the Regulation of Carbohydrate Metabolism. Mol Biol Cell 19(8):3323-33 SGD PMID 18508925
- ↑ Boer VM, et al. (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278(5):3265-74 SGD PMID 12414795
- ↑ submitted by Viktor Boer on 2003-07-25
See Help:Categories on how to add the wiki page for this gene to a Category </protect>