Content Update:

- Disease-related Genes
- Protein Abundance

ICYGMB; Aug 21, 2019

Disease associations - background

- Collected human-yeast cross-species functional complementation data. 1014 total annotations from P-POD and SGD representing 569 genes available in YeastMine.
- A subset of papers refer to associations between human genes and disease. Connections between the yeast gene, the human homolog and associated diseases were collected using Disease Ontology (DO) terms.

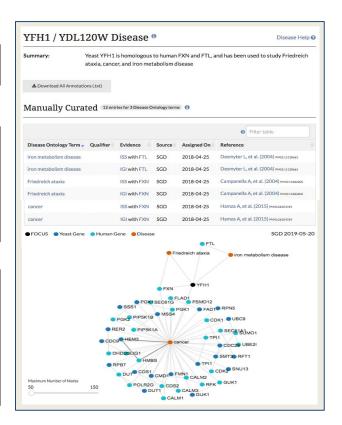
• Identified 639 associations for 209 genes, using three evidence codes: IGI (genetic interaction), ISS (sequence similarity) and/or IMP (mutant phenotype).

Human disease-related genes

Disease Summary

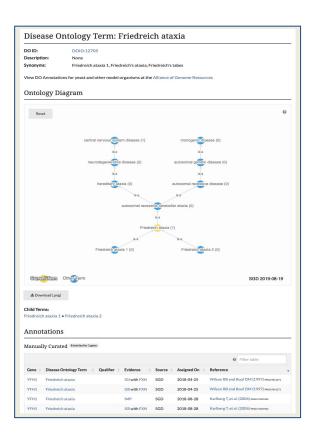
Association details:

□ DO term□ Evidence


■ Source

Date assignedReference

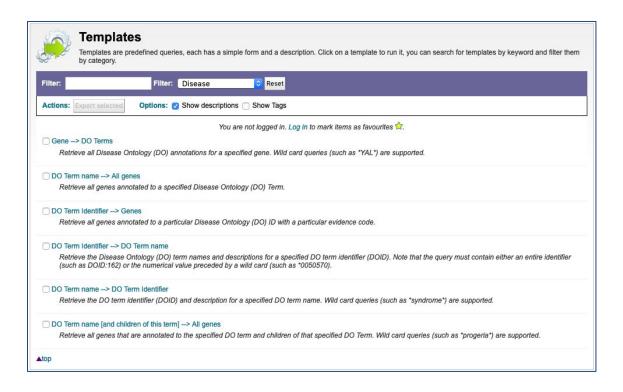
Network Diagram:


Connect genes, orthologs and shared DO terms

Move slider to adjust network (# of nodes)

Interactive DO diagram with relationships

DO term annotation table



Tabbed page disease content

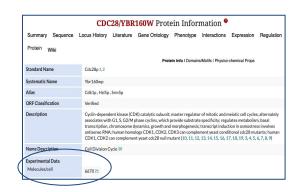
Disease Ontology term page

Data in YeastMine*

* https://yeastmine.yeastgenome.org/yeastmine/begin.do

Future directions

- Continue curating disease-associated genes from the literature while collecting human-yeast cross-species complementation data.
- Create a computational section of disease-associations using orthologous gene calls from the Alliance using the ortholog prediction tool, DIOPT, and the IEA (Inferred from Electronic Annotation) evidence code.


Protein abundance - background

Global analysis of protein expression in yeast

Sina Ghaemmaghami^{1,2}, Won-Ki Huh^{1,3}, Kiowa Bower^{1,2}, Russeli W. Howson^{1,3}, Archana Belle^{1,3}, Noah Dephoure^{1,3}, Erin K. O'Shea^{1,3} & Jonathan S. Weissman^{1,2}

¹Howard Hughes Medical Institute, ²Departments of Cellular & Molecular Pharmacology and ³Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California 94143-2240, USA

- We used to display abundance data from this GFP-tagging study.
- Collected data from many other proteome-wide studies, but reported in various units (arbitrary units, molecules/cell)

Brandon Ho, Anastasia Baryshnikova and Grant Brown reanalyzed abundance data from 21 quantitative proteomic analyses (Ho et al. 2018; PMID: 29361465).

- Mode-shift normalization and scaling were used to convert all data to the same abundance unit (molecules per cell).
- Asked to incorporate this data into SGD.

Unification of Protein Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae Proteome

Brandon Ho, 1 Anastasia Baryshnikova, 2,3 and Grant W. Brown 1,4,*

¹Department of Biochemistry and Donnelly Center, University of Toronto, Toronto, ON M5S 1A8, Canada

²Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA

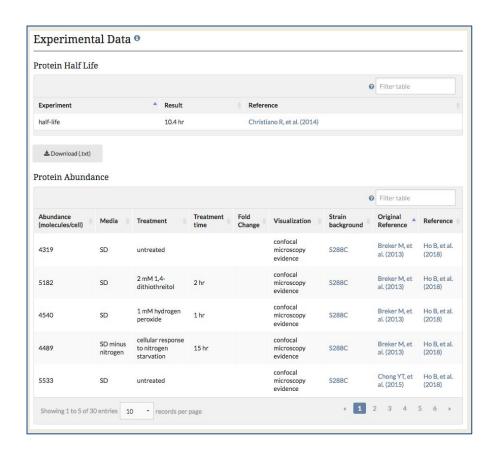
³Present address: Calico Life Sciences, South San Francisco, CA 94080, USA

⁴Lead Contact

Abundance data integration

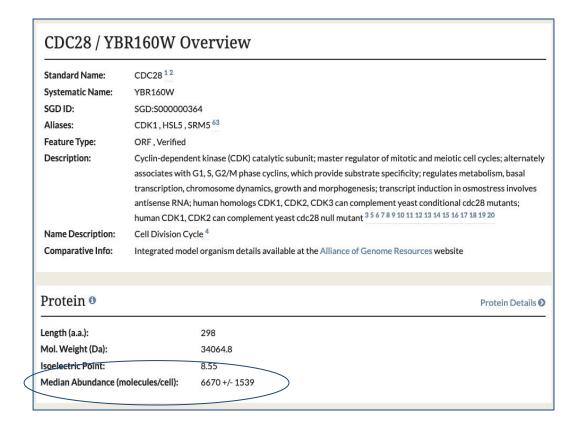
We added normalized values and metadata (media, visualization and strain background) from both untreated cells and cells treated with various environmental stressors.

- Used several ontologies for the metadata:
 - Experimental Factor Ontology (EFO) growth media
 - Evidence & Conclusion Ontology (ECO) visualization
 - Chemical Entities of Biological Interest (ChEBI) and GO treatments

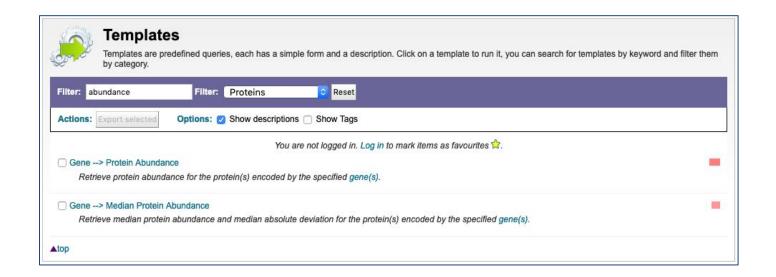


 Fold change was included when abundance in stressed cells was more than two standard deviations from the untreated average.

Protein tab page


Display data and metadata in a table within the experimental data section of the protein tab page

Locus Summary page


Authors requested that we include the median value for untreated cells.

- They calculated the median value and median absolute deviation.
- Displayed these on Locus Summary Pages

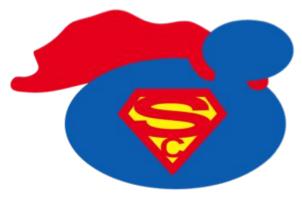
Data in YeastMine

Thank you!

SGD Website

yeastgenome.org

Questions/Comments


sgd-helpdesk@lists.stanford.edu

YouTube Channel

youtube.com/SaccharomycesGenomeDatabase

Download this presentation bit.ly/ICYGMB-2019

