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Review
The quest to characterize each of the genes of the yeast
Saccharomyces cerevisiae has propelled the develop-
ment and application of novel high-throughput (HTP)
experimental techniques. To handle the enormous
amount of information generated by these techniques,
new bioinformatics tools and resources are needed.
Gene Ontology (GO) annotations curated by the Sac-
charomyces Genome Database (SGD) have facilitated
the development of algorithms that analyze HTP data
and help predict functions for poorly characterized genes
in S. cerevisiae and other organisms. Here, we describe
how published results are incorporated into GO annota-
tions at SGD and why researchers can benefit from using
these resources wisely to analyze their HTP data and
predict gene functions.

Gene Ontology annotations aid functional genomics
Saccharomyces cerevisiae was the first eukaryotic organ-
ism whose nuclear genome was completely sequenced [1].
This paved the way for the development of strain collec-
tions inwhich every protein-coding gene in the genomewas
modified – for example, by deletion, tagging with green
fluorescent protein (GFP) or engineering for overexpres-
sion [2–4]. Coupled with advances in technology that allow
transcribed regions of the genome to be detected on micro-
arrays or protein abundance to be detected by mass spec-
trometry, these resources have enabled researchers to
experimentally survey the S. cerevisiae genome and pro-
teome [5–7].

The pioneering position of S. cerevisiae as a model
organism in the genomics era is based not only on its
experimental tractability and a complete genome sequence
but also on the fact that the extensive literature is curated
using Gene Ontology (GO), which enables researchers to
make sense of large quantities of data [8]. The GO Con-
sortium has developed and continues to update three
structured, controlled vocabularies to describe a gene pro-
duct: molecular function, biological process and cellular
component [9] (Box 1). With these three vocabularies, GO
provides a common language – used by a growing number
of research projects and information resources working in
different model organisms – to describe the functions of
gene products frommany species [10]. This widespread use
Corresponding author: Cherry, J.M. (cherry@stanford.edu).

286 0966-842X/$ – see front matter � 2009 El
has facilitated the comparison of shared functions among
hundreds of organisms, the functional annotation of newly
sequenced genomes and the analysis of many types of data.
GO annotations have become the primary resource used to
facilitate the annotation of microarray expression profiles,
protein interactionnetworks and regulatorymodules [8,10].
The interested reader can find more articles on GO and its
applications in this issue of Trends in Microbiology.

Since 2001, the Saccharomyces Genome Database
(SGD) has used GO to provide descriptions, or annotations,
of the functional roles of gene products in S. cerevisiae
based on the published literature (http://www.yeastgen-
ome.org/) [11]. In 2003, S. cerevisiae became the first
organism with at least one GO annotation in each of the
three GO vocabularies for every protein-coding and RNA
gene. In this article, we describe how these GO annotations
are curated at SGD to represent the current state of
knowledge about the biology of S. cerevisiae, as well as
how the scientific community has used these annotations.
Because we cannot provide a comprehensive review of the
entire body of S. cerevisiae literature that uses GO annota-
tions (over 700 publications, as of April 2009) here, we
highlight applications that facilitate the functional charac-
terization of genes inS. cerevisiae and other organisms.We
also describe why understanding the process of making GO
annotations can improve the results produced by these
applications.

How GO annotations are made at SGD
The core of a GO annotation comprises a gene product, a
GO term from one of the three vocabularies, a literature
reference and an evidence code (Box 1,2) [12]. At SGD, GO
annotations for all genes are curated from the primary
research literature. This means that a curator – a PhD-
level biologist who is an expert at abstracting information
from the literature – has read the published work and
determined the appropriate GO annotation(s) to describe
the experimental results in that paper. For this purpose,
all available literature for a gene is reviewed to identify
experimental data and sequence-based predictions that
characterize its molecular activity, cellular localization
or biological role (Figure 1a,b). Thus, the set of manually
curated GO annotations for all protein-coding and RNA
genes represents the current collective view of the yeast
research community.
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Box 1. Key elements of a Gene Ontology annotation

The Gene Ontology (GO) develops three structured vocabularies, also

referred to as GO aspects [9]. The Molecular Function vocabulary

represents basic activities, such as catalysis or binding. The Biological

Process vocabulary represents the larger cellular goals that are

accomplished by multiple molecular functions, such as signal

transduction or pyrimidine metabolism. The Cellular Component

vocabulary represents locations in the cell, from large structures such

as the nucleus to smaller structures such as a protein complex. More

information about these vocabularies is available from the GO

website (http://www.geneontology.org/GO.doc.shtml#ontologies)

For many users, it is the association of GO terms with individual

genes that makes GO useful. Scientific curators associate a specific GO

term to a specific gene to create a GO annotation [12]. All genes that

produce a gene product, whether protein or RNA, can be associated

with a GO term. In addition to a gene and a GO term, a GO annotation

also includes the source of the information supporting the association,

as well as an evidence code (Figure I). The reference is usually a

published paper with a PubMed ID but is sometimes an unpublished

abstract describing a method of assigning GO annotations used within

the GO Consortium. The evidence code indicates the type of evidence

that supports the annotation (Box 2). To avoid possible confusion

caused by multiple uses of the same gene name in the published

literature or from GO terms with similar names, the annotations are

made using unique alphanumerical IDs for genes, GO terms and

references. More information about GO annotations is available from

the GO website (http://www.geneontology.org/GO.format.annotation.

shtml). The ribbon diagrams of URA3 [70] and URA6 [71] were

contributed to the Protein Data Bank (PDB; www.pdb.org) [72].

Figure I. Examples of S. cerevisiae GO annotations. Each row is an example of a GO annotation, which includes a protein or RNA gene product, a GO term, a reference

and an evidence code (Box 2). The ribbon diagrams of URA3 [70] and URA6 [71] were contributed to PDB [72].
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Some protein-coding genes also have GO annotations
derived from high-throughput (HTP) experimental data
(Figure 1c) or from computational prediction methods
(Figure 1b,d) [13]. At present, RNA genes have only manu-
ally curated GO annotations because these genes are
generally not included in HTP experiments.

As a pioneer model organism with a small, completely
sequenced genome, there are a wide range of HTP studies
for S. cerevisiae (papers describing HTP or genomic studies
are listed at http://www.yeastgenome.org/cache/genome-
wide-analysis.html). Some of these HTP studies can be
used to support GO annotations, whereas others are incorp-
orated as alternative types of annotations: phenotypes are
curated using SGD’s new phenotype curation system [14],
and the full dataset is available (http://downloads.yeastgen-
ome.org/literature_curation/phenotype_data.tab); curated
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Table 1. Numbers of protein coding genes (5796 total)
annotated by each annotation type for each Gene Ontology
vocabulary, as of April 2009

Gene Ontology vocabulary
Molecular

function

Biological

process

Cellular

component

Annotation type

Manually curated 5771 (99.6%) 5770 (99.6%) 4696 (81.0%)

High-throughput 153 (2.6%) 172 (3.0%) 2344 (40.4%)

Computational 3388 (58.5%) 4554 (78.6%) 4395 (75.8%)

Box 2. GO evidence codes

The GO Consortium uses a small set of evidence codes to provide a

general idea of the type of evidence supporting an annotation.

Curator-assigned evidence codes require that a curator has read the

paper or analyzed the data to use one of these codes. The curator-

assigned evidence codes can be divided into four categories:

experimental, computational analysis, author statement and curator

statement (Table I). Experimental evidence codes indicate experi-

ments (mutants, genetic analyses, enzyme assays, physical interac-

tions, etc.) reported in the paper cited. Computational analysis codes

indicate annotations based on computational analyses of various

types, often involving sequence data, high-throughput experimental

data or a combination of multiple data types. Author statement codes

indicate that the annotation is based on an author statement in a

published paper, often a review. The statement is considered

traceable when another reference is cited and non-traceable when

no reference is associated with that statement. Curator statement

codes indicate judgments made by the curator based on under-

standing of the biology; for example, a gene shown to be a

transcription factor for RNA polymerase II must be in the nucleus to

function, so the curator can make an annotation to the term ‘nucleus’

using the IC (inferred by curator) code, or when an overall review of

the literature indicates that there is no information, the ND (no

biological data available) code can be used. There is also one code,

IEA (inferred from electronic annotation), for use when annotations

are made automatically by a computational method without curator

review (e.g. running InterProScan and applying the interpro2 go

mapping file without any curatorial judgment to approve the resulting

annotations).

Table I. Categories of GO evidence codes

Evidence code category Code Evidence code full name Type of evidence

Curator-assigned evidence codes

Experimental EXP Inferred from experiment Any experimental evidence

IDA Inferred from direct assay Enzyme assays, in vitro reconstitution, immunofluorescence, etc.

IPI Inferred from physical interaction 2-Hybrid interactions, co-purification, co-immunoprecipitation, etc.

IMP Inferred from mutant phenotype Mutations, allelic variation, phenotypes of altered expression, etc.

IGI Inferred from genetic interaction Genetic suppression, synthetic lethality, complementation, etc.

IEP Inferred from expression pattern Northerns, Westerns, microarray expression, etc.

Computational analysis ISS Inferred from sequence or structural

similarity

Any sequence-based evidence

ISO Inferred from sequence orthology Assertion of orthology to gene in another species

ISA Inferred from sequence alignment Pairwise or multiple alignment

ISM Inferred from sequence model Sequence models (e.g. Hidden Markov Models, tRNASCAN,

InterPro domains, etc.)

IGC Inferred from genomic context Operon structure, syntenic regions, pathway analysis, etc.

RCA Inferred from reviewed computational

analysis

Predictions based on one or more data types

Author statement TAS Traceable author statement Author statements citing a reference

NAS Non-traceable author statement Author statements not citing a reference

Curator statement IC Inferred by curator When a curator makes an inference based on another GO

annotation

ND No biological data available When there is no information available on that gene product

Automatically assigned evidence codes

IEA Inferred from electronic annotation From computational methods without curatorial involvement
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protein–protein and genetic interactions are available from
BioGRID (a curateddatabase for interactiondata; seehttp://
www.thebiogrid.org/) [15]; and expression and functional
genomic data are available via the Yeast Functional Geno-
mics Database (http://yfgdb.princeton.edu/).

HTP data are incorporated as GO annotations when the
data indicate a gene product is directly involved in the
process being studied. We believe that HTP phenotype
data often identifies many genes whose mutations affect
broad processes owing to an indirect, downstream effect.
For example, abnormal telomere length is a mutant
phenotype observed for hundreds of genes [16,17].
Although the observation of shortened telomeres is bio-
logically relevant, additional analysis must be done to
judge whether the identified genes have a direct role in
telomere maintenance [18,19]. Therefore, although these
HTP datasets are used to make phenotype annotations in
SGD [14], they are generally not represented as GO anno-
tations. Similarly, large-scale expression studies are not
used to assign GO annotations. For example, genes whose
expression changes in response to sulfite are not annotated
to the biological process terms ‘sulfite metabolism’ or
‘sulfite detoxification’ [20]. Although it is true that the
288
expression of these genes changes, it is not clear from
these data which genes have a direct role in the response
of the cell to the tested condition.

As a consequence of our selectivity in the use of HTP
data, only�40% of the genome’s protein-coding genes have
such GO annotations (Table 1). Almost all of these annota-
tions are from studies that examined the localization of
proteins using a single experimental method, such as
visualization using a GFP marker or purification of an
organelle [3,21,22], and the cellular component terms used
are general ones, such as ‘cytoplasm’ or ‘nucleus’. Fewer
than 300 genes, �5.5% of the protein-coding genes in the
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Figure 1. GO annotation types at SGD and sources of information. At SGD, GO annotations are made based on a wide range of published literature. Each GO annotation is

further categorized with an annotation type: manually curated, high-throughput or computational [13]. (a) Manually curated GO annotations are made individually for each

gene by curators reading the published literature describing experimental characterizations of that gene. We attempt to find experimental evidence whenever available.

However, in our first pass through the genome to generate at least one annotation in each GO vocabulary for all genes, we sometimes made annotations from reviews

using the TAS (traceable author statement) code (Box 2). We are working to replace these with annotations from the primary experimental papers with appropriate

experimental evidence codes. (b) Sequence-based predictions can be classified as either manually curated or computational GO annotations. Sequence similarity

comparisons from published papers are categorized as manually curated GO annotations because an expert in the field generated the comparison and a curator read the

publication to determine the appropriate annotation. Predictions generated by the Gene Ontology Annotation group at the European Bioinformatics Institute are

categorized as computational annotations because they are not reviewed by curators. (c) HTP annotations are made from published papers describing results of HTP

experimental techniques. (d) Computational annotations are based on a variety of computational techniques, including sequence similarity and integrative analysis of

experimental data. Computational methods that incorporate HTP data and sequence analysis should take caution to remove GO annotations derived from the source data to

avoid including the information more than once.
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genome, have molecular function or biological process
annotations based on HTP data (Table 1).

In the absence of published literature describing focused
or HTP experimental characterization of a gene, an anno-
tation is made in each GO vocabulary using the ND (no
biological data available) evidence code (Box 2). This
indicates that the literature for the gene has been reviewed
by curators and no information characterizing the role of
the gene has been published.

GO annotations based on computational analyses
(Figure 1b,d) were added to SGD in 2007 [13]. These anno-
tations help researchers generate hypotheses of potential
functions to test, particularly for experimentally uncharac-
terized genes. Two types of computational predictions
available at SGD are protein domain predictions (from
sequence analysis) and high-confidence predictions (based
on integrated computational analyses of multiple HTP
experimental datasets). The sequence-based predictions
are provided by theGeneOntologyAnnotation (GOA) group
at the European Bioinformatics Institute (EBI) [23,24]. The
predictions based on integrated computational analyses of
various types of HTP experiments and sometimes sequence
or other information are produced by published algorithms
[25,26]. Because these annotations are not individually
reviewed by curators, we require these annotations be
updated at least once a year. Computational annotations
that have not been recalculated after one year are removed
from SGD.

Thus, the manually curated set of GO annotations prim-
arily represents the results of small-scale, gene-by-gene
characterizations. For the majority of the protein-coding
genes (over 90%), these are supplemented by computational
predictions. For slightly less than half of the protein-coding
genes (44%), there are also HTP annotations, mostly to
cellular component terms (Table 1, Figure 1).

Using GO annotations to advance S. cerevisiae

experimental research
The availability of GO annotations in each of the three GO
vocabularies for every S. cerevisiae protein-coding and
289
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RNA gene has transformed the analysis methods available
to bench biologists. As HTP resources and methods have
becomemore widely available, the use of tools based on GO
annotations has become more important for identifying a
function, process or localization shared among a set of
genes. The frequency of this type of usage is underesti-
mated when searching the published literature (for
instance, using PubMed): although authors might cite
the reference for a specific GO analysis tool, it is rare to
find a citation for theGOproject or SGDas the source of the
S. cerevisiae annotations. In fact, some researchers make
no citation, demonstrating that the classification of genes
using GO terms has become an accepted tool for molecular
genetics.

One of the first suggested applications for GO is still
widelyused: the identificationofa commonbiological role for
genes that are part of an interesting cluster of microarray
expression data [9,27]. However, there are many other
experimental methods that produce lists of genes that can
be analyzed with GO. Examples include gene sets having a
genetic interaction with a target gene [28–30], genes whose
mutants share a common phenotype [31–33], genes whose
transcription levels might contribute to different morpho-
logical traits in different strain backgrounds [34], genes
whose messenger RNAs (mRNAs) are poorly translated
[35], protein interaction networks [36,37] and proteins that
interact with a tagged protein or an mRNA [38,39].

Regardless of the type of experiment that generates the
list of genes, many researchers use freely available tools to
identify the function, process or localization that is enriched
in the list. Such tools include GO Term Finder from SGD
(http://www.yeastgenome.org/TermFinder) [40] and other
analytical tools listed on the GO Consortium website
(http://www.geneontology.org/GO.tools.shtml) [41].
Although each tool has its unique features, its input is
typically a list of genes and its output is the identification
of GO terms significantly shared by those genes. For
instance, Georgiev and collaborators used the SGD GO
TermFinder to discover that the Syh1p andSmy2p proteins
(both containing a particular domain known as GYF) might
be involved in mRNA catabolism, based on a list of proteins
that interactedwith them. This result enabled the research-
ers to test and confirm that these two GYF proteins localize
to cytoplasmic mRNA processing bodies [42].

The use of GO annotations to identify the commonalities
within a set of genes to make hypotheses for subsequent
experiments has clearly become routine in the research
community, but knowingwhich annotations are being used
for the analysis and what types of evidence support these
annotations can provide more accurate results [10,41]
(Figure 1). For example, the GO Term Finder available
at SGD does not use computationally predicted annota-
tions when finding a function, process or localization
shared among a list of genes. Excluding these compu-
tational predictions ensures that the analysis is based
on annotations made from the primary literature, both
small-scale and HTP experiments. Therefore, we advise
that researchers should consider removing annotations
made from computational or automatedmethods (including
the RCA and IEA evidence codes; Box 2) when using other
tools, to avoid propagating untested hypotheses.
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The availability of GO annotations for S. cerevisiae and
web-based tools that analyze gene lists based on these
annotations have facilitated the analysis of HTP data.
However, it is essential that the researcher understand
how GO annotations are made to select the correct set of
annotations to analyze their HTP results effectively.

Extracting functional information from HTP data in S.

cerevisiae

Any list of genes derived from an experimental assaymight
contain one or more S. cerevisiae genes that lack an infor-
mative GO annotation because of the absence of direct
experimental evidence. Once a shared biological process
has been identified for the characterized genes in the list, it
has been common practice to transfer that process to the
experimentally uncharacterized genes solely based on
their presence in the same list [43]. Although this transfer
of annotations can be misleading, the continued develop-
ment of sophisticated algorithms has strengthened the
predictive power of HTP data by using existing GO anno-
tations in novel approaches.

Functional predictions for experimentally uncharacter-
ized genes have benefited from the inclusion ofS. cerevisiae
GO annotations and the GO vocabularies as integral com-
ponents of algorithms that analyze microarray and
protein–protein interaction data. Some of the newer algor-
ithms that group genes according to similar microarray
expression patterns also include GO annotations to help
generate biologically relevant clusters and improve func-
tional predictions [44–46]. Not surprisingly, functional
predictions using two or three GO vocabularies uncover
details about the expression data more effectively than
those using annotations from only one GO vocabulary [47].
In addition to using more than one vocabulary, integrating
the relationships between GO terms defined in the GO
biological process with protein–protein interactions
improves the accuracy of the annotations [48].

More recent methods have taken an integrated
approach, combining multiple types of experimental data
to identify the functions of proteins [49]. For example,
algorithms developed by the Troyanskaya, Marcotte and
Roth groups analyze data from diverse experimental
sources based on genes that have common GO annotations
or use the annotations to describe the genes that have been
grouped together based on data with similar patterns
[25,26,50–52]. The utilization of multiple types of HTP
experimental data (such as expression and protein–protein
interaction datasets), in addition to more sophisticated
uses of GO (such as including GO annotations from more
than one vocabulary or taking advantage of the GO struc-
ture), might improve the functional predictions [26,53].

In addition to developing more sophisticated algor-
ithms, an understanding of GO annotation practices and
guidelines is essential to obtain the best quality results
[10]. It is important not to include the same information
twice, once as primary data and a second time as the GO
annotation derived from it (Figure 1). For example, to avoid
falsely emphasizing the significance of a single HTP data-
set or the GO annotations derived from it, algorithms that
combine annotations with HTP datasets must exclude any
annotations derived from the publications describing those

http://www.yeastgenome.org/TermFinder
http://www.geneontology.org/GO.tools.shtml


Review Trends in Microbiology Vol.17 No.7
HTP datasets. Similarly, algorithms that include protein
domains should exclude GO annotations assigned based on
the presence of those protein domains. However, research-
ers evaluating a new prediction algorithm might choose
annotations from a single source as an appropriate com-
parison set (e.g. using all the annotations based on Inter-
ProScan, a tool that detects specific motifs and signatures
in proteins [24], from the GOA group at EBI to benchmark
a new algorithm based on protein domains).

New algorithms and bioinformatics tools have been
developed to extract functional information from numer-
ous HTP data. We advise those groups combining GO
annotations with HTP datasets to review the references
used to make the annotations to select appropriate anno-
tations for their analysis.

Use of S. cerevisiae annotations to predict gene
functions in other organisms
An early prediction by Ashburner and collaborators was
that GO would enable the transfer of functional annota-
tions to newly sequenced genomes [9]. This vision has been
realized with the use of S. cerevisiae annotations to make
functional annotations for genes in newly sequenced gen-
omes with small research communities. Based on sequence
similarity, the S. cerevisiae annotations were transferred
to genes of the filamentous fungus Ashbya gossypii; the
fungal pathogens Pneumocystis carinii, Sclerotinia scler-
otiorum and Candida albicans; and more distant organ-
isms, such as the compost worm Eisenia fetida [54–58].

Because themajority ofS. cerevisiaeGOannotations are
derived from experimental evidence, they have been used
to determine the accuracy of predictions. For example,
SGD’s annotations have been used to validate functional
predictions based on sequence similarity, by determining
whether the predicted function matches the manually
curated GO annotation [59]. Some researchers have even
compared the results from their analysis based on the full
set of annotations to those from the same algorithm run
with only a subset of the annotations, as proof of concept
that their method would be suitable for predicting gene
functions for poorly annotated genomes [60]. In these
methods, S. cerevisiae GO annotations provide a gold
standard for measuring the accuracy of functional predic-
tions. Once validated using S. cerevisiae GO annotations,
new algorithms utilizing microarray expression data,
protein–protein interactions, sequence similarity or a com-
bination of these data can improve the functional predic-
tions for genes from many other organisms.

Caution must be exercised in transferring annotations
[43]. Genes in closely related species that seem to have a
common evolutionary origin might have a conserved func-
tion, such as transcription factor activity, but be involved
in regulating very different processes [61,62]. Snitkin and
collaborators showed that phylogenetic profiling methods
exploring the co-occurrence of multiple genes between
genomes do not work well for eukaryotic genomes [63].
In summary, although GO annotations from S. cerevisiae
have been successfully used to facilitate the annotation of
other genomes, the question of which annotations should
be transferred depends on the specific species and the role
of the gene.
Automated methods to extract information from the
literature
Although they are informative, annotation transfers based
on sequence similarity are still hypotheses for gene func-
tions that need to be proven experimentally. Thus, the
standard for functional annotations is a comprehensive set
of GO annotations derived from the scientific literature.
Unfortunately, the development of such a set might not be
possible formodel organism communities with a large body
of literature but limited curation resources. Natural
language processing and text mining can facilitate the
identification of literature to be used for GO annotations
and, thus, maximize the effectiveness of a small curatorial
staff [64,65]. For instance, S. cerevisiae GO annotations
have been used to validate a full-text analysis that ident-
ified papers supporting GO annotations in the molecular
function vocabulary by searching for specific experimental
methods [66]. Like gene function prediction algorithms,
these tools – once developed and validated using S. cere-
visiae GO annotations – can be used by other model organ-
ism communities.

Continuing to improve the functional annotation of
genes in S. cerevisiae

Intriguingly, the number of S. cerevisiae genes lacking any
functional annotations has remained consistent through
the years [67]. Despite the vast body of literature for this
organism, 554 out of 5796 protein-coding genes (almost
10%) remain uncharacterized for all three GO vocabul-
aries. Approximately 500 additional genes only have anno-
tations to very general locations, such as ‘cytoplasm’,
defined by HTP localization experiments. Thus, we believe
that the set of uncharacterized genes is better represented
by the number of genes with GO annotations indicating
that no information is available in both the molecular
function and the biological process vocabularies. As of April
2009, there are 1134 protein-coding genes in this group.
Computational predictions based on either sequence sim-
ilarity or integrated computational analysis of experimen-
tal and other data provide hypotheses about the biological
process of only one-third of these 1134 genes and about the
molecular functions of only one-fifth of them (Figure 2).
Although broad terms like ‘cytoplasm’ and ‘membrane’
have been assigned for many of these genes by compu-
tational predictions, we again believe that these annota-
tions are not informative about the gene’s role in the cell.
Thus, for the majority of these undercharacterized genes,
there is not a prediction for either the function or the
process, and we still have no inkling what role they have
in the cell.

Although predicting gene functions based on the inte-
grated analysis of multiple datasets can provide hypoth-
eses for genes that lack GO annotations, this analysis is
wholly dependent on the experimental conditions
examined. Perhaps some uncharacterized genes cannot
be classified because the experimental condition necessary
to observe their function has not yet been examined. For
example, to the best of our knowledge, no publications have
reported HTP protein interaction networks or genetic
interaction datasets during meiosis and sporulation in
S. cerevisiae. Experiments during meiosis or sporulation
291



Box 3. How to find functions for uncharacterized genes in

S. cerevisiae

� Understand how GO annotations are made and identify which

ones should be included in or excluded from your analyses.

� Use mutant phenotype data from SGD [14], as well as genetic and

physical interactions from BioGRID [15], to complement the GO

annotations.

� Generate datasets using different experimental conditions to

expand the experimental conditions tested. For example, because

no HTP protein interaction networks or genetic interaction

datasets have been published for S. cerevisiae during meiosis, it

is difficult to predict which uncharacterized genes might be

involved in meiosis using current algorithms that group genes

according to similar patterns across multiple datasets.

� Include RNA genes in HTP studies and computational predictions.

New RNAs whose functions are not yet known have been reported

and added to the set of genes in S. cerevisiae at SGD [73,74].

Including these RNA genes in HTP studies might facilitate

identifying their functions.

� Algorithms should consider more than one GO vocabulary at a

time and/or the structure of the GO vocabularies.

Figure 2. Computational predictions for the uncharacterized protein-coding genes

in S. cerevisiae. Out of 5796 protein coding genes, 1134 of them have no published

information with regard to their molecular function (MF) or their biological process

(BP). Predictions for the biological process can be made for only 416 (36.7%) of

them, and predictions for molecular function can be made for even fewer, only 211

(18.6%). For the majority (654, or 57.7%), no prediction can be made for either

molecular function or biological process to provide hypotheses for biologists to

test experimentally.
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would provide additional data specific for these conditions,
which could help identify any uncharacterized genes
involved in these processes.

In March 2007, Peña-Castillo and Hughes [67] revisited
a prediction made three years earlier [68] that all S.
cerevisiae genes would have a function by mid-2007. How-
ever, they determined that 1253 genes, over 20% of the
genome, were still classified as ‘Uncharacterized’ at SGD
[67]. They identified �200 genes that were found only in
fungi [67]. Therefore, more research in other fungal species
could help characterize some of the fungal-specific genes
found in S. cerevisiae; of particular interest are those fungi
that are studied specifically for their niche specialization,
such as C. albicans (with respect to the medical implica-
tions of biofilm formation) or Aspergillus fumigatus (a
common pathogen in immunocompromised patients).
Another group of more than 150 uncharacterized genes
contained sets of genes having at least 50% sequence
similarity to each other [67]. Owing to their redundancy,
the corresponding proteins will be difficult to analyze via
single mutations, and those in groups with more than two
members will probably remain resistant to characteriz-
ation by techniques such as synthetic genetic analyses,
which generally involve two mutations. However, for the
majority of the uncharacterized genes, there is no clear
single explanation for why they are refractory to charac-
terization [67]. To begin to learnwhat these genes domight
take more refined experimental genomic approaches, in
addition to exploring other environmental conditions and
292
developing more sophisticated computational analyses
that are enabled by GO, as discussed above.

Concluding remarks and future directions
SGD strives to maintain a high-quality set of GO annota-
tions that reflect the experimental literature to aid the
efforts of the scientific community to generate new data
andmethods that facilitate the functional characterization
of genes in S. cerevisiae and other organisms. To this end,
SGD continues to review and update our oldest GO anno-
tations as needed, based on current research. We also plan
to replace all GO annotations derived solely from author
statements with annotations supported by experimental
results. In addition, future efforts will involve comparing
computationally predicted GO annotations with manually
curated ones to refine the manually curated set by identi-
fying inaccurate or missing annotations. This comparison
will also improve the accuracy of some computational
prediction methods.

This review has focused on how S. cerevisiae GO anno-
tations made by SGD have been used to analyze results
from HTP experimental methods and predict functions of
uncharacterized genes in S. cerevisiae and other organ-
isms. However, GO annotations are also used to construct
cellular pathways, construct protein interaction networks
and build transcriptional regulatory networks to under-
stand the budding yeast at the systems biology level [8,69].
Although GO annotations can provide a summary of the S.
cerevisiae research literature, it is important for research-
ers to understand what types of data are represented by
the annotations so they can use the information effectively
and appropriately in their research (Box 3).
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