Using computational predictions to improve
literature-based Gene Ontology annotations

FOR A MANUAL ANNOTATION

WE'RE LOOKING FOR A FEW GOOD MANS

Julie Park, Ph.D.

Saccharomyces Genome Database e http://www.yeastgenome.org/
Department of Genetics e Stanford University School of Medicine



« Curation efficiency

« Data accuracy

Attaining curation nirvana...

» Annotation consistency »




...Is not easy!

Annotation errors

1. Mistakes in capturing
the annotation

2. Outdated information

3. Missing annotations

How can you find these errors?
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Flavors of GO annotations

1. Literature-based — “Manual”

Individually assigned by biocurators based on the
published literature

2. Computationally-predicted — “Computational”

Automatically generated by in silico methods such as
protein signatures or computational algorithms

Sources of computational predictions in SGD
InterPro

Swiss-Prot Keywords (SPKW) 2
YeastFunc 3
BioPixie 4

Camon, et al (2003) Genome Res. 13:662-72
http://www.ebi.ac.uk/GOA/Swiss-ProtKeyword2GO.html
Tian, et al (2008) Genome Biol. 9 Suppl 1:S7

Huttenhower and Troyanskaya (2008) Bioinformatics. 24:i330-8



Flavors of GO annotations

1. Literature-based — “Manual”
Individually assigned by biocurators based on the
published literature

2. Computationally-predicted — “Computational”

Automatically generated by in silico methods such as
protein signatures or computational algorithms

Sources of computational predictions in SGD
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Is it possible to take advantage of the strengths of computational
predictions and leverage these annotations to improve manual
ones?



CvManGO:
Computational vs. Manual GO Annotations




CvManGO:
Computational vs. Manual GO Annotations
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Do discrepancies between a literature-based annotation
and a computational prediction indicate that the
manual annotation needs to be updated?



CvManGO:
Computational vs. Manual GO Annotations
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CvManGO:
Computational vs. Manual GO Annotations
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Discrepancies can identify genes that need updating
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Extrapolating to the entire genome
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Not flagged
for review:
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resulting in potential with computational
improvement predictions
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no change
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16%

Still requires reviewing 4379/6353 genes—can we narrow this down

N o e 1



Factoring in the type of update

flagged for review
resulting in potential
improvement
(add novel annotation)
20%

flagged for review
resulting in potential
improvement
(refinement and
removal only)
33%

no
computational
prediction
available
15%

Not flagged
for review:
no discrepancies
with computational
predictions
16%

flagged for
review:
no change
needed
16%



Factoring in the type of update
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Attributes of flagged genes

What are factors that enrich for genes missing annotations?

Type of discrepancy

GO aspect

Amount of literature for a gene

Source of the computational prediction

Number of computational sources with discrepancies



Attributes of flagged genes

What are factors that enrich for genes missing annotations?

* Type of discrepancy



Analysis by Class of Discrepancies
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Analysis by Class of Discrepancies

% updatable

Shallow class 78.8%
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Types of annotation updates by class

Mismatch Shallow

Number of genes needing:

~ annotation refinement
~ annotation removal
1 novel annotation addition



Summary & Conclusions

« Majority of S. cerevisiae literature-based GO annotations are good

« Comparing manual vs. computational prediction can identify genes
whose annotations need updating

« Additional work needs to be done to pinpoint these annotations
and genes
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« Majority of S. cerevisiae literature-based GO annotations are good

« Comparing manual vs. computational prediction can identify genes
whose annotations need updating
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and genes

We can overcome these errors!

It works but
there is still work to do!




Future plans

|dentify predictive features of genes that need updating

— Are there specific GO terms used for manual curation more likely to be updated?

- Do specific computational predictions indicate a GO term should be updated?

- Examine node distance between GO terms used for computational and
literature-based annotations

- Examine contribution of annotation date and new publications

- A combination of or all of the above?

Evaluate the accuracy of computational predictions for S. cerevisiae

Expand to evaluate annotations made based on orthology
- Annotations from GOC PAINT project

Develop a pipeline for curation prioritization at SGD

Extend to other annotation projects
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